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Results from data processing
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Next, analysis of the quantitative metabolite information ...

3

Metabolomics data analysis

* Goals

— biomarker discovery by identifying significant features associated
with certain conditions

— Disease diagnosis via classification

* Challenges
— Limited sample size
— Many metabolites / variables

Workflow

pre-treatment

univariate
analysis

multivariate
analysis

machine
learning
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Data Pre-treatment

Normalization (I)

* Goals

— to reduce systematic variation

— to separate biological variation from variations introduced in the
experimental process

— to improve the performance of downstream statistical analysis

* Sources of experimental variation
— sample inhomogeneity
— differences in sample preparation
— ion suppression

01/27/2014



» Approaches

Normalization (II)

— Sample-wise normalization: to make samples comparable to each

other

— Feature/variable-wise normalization: to make features more
comparable in magnitude to each other.

* Sample-wise normalization

normalize to a constant sum
normalize to a reference sample

normalize to a reference feature (an internal standard)
sample-specific normalization (dry weight or tissue volume)

» Feature-wise normalization (i.e., centering, scaling, and
transformation)

Class

joed

Centering, scaling, transformation

Method Formula
Centering i,)— =X; =%
R
Autoscaling By =

Range scaling

Pareto scaling

vastscaling %= %
i B 5
Level scaling gy %
=
T
2 = logl x,
,=otog( )

transformation Ky = Xy = %

)?—-‘Ax
Power i 5)
= %

transformation Ky =

Unit

Log
o

Vo

Goal

Focus on the differences and not the
similarities in the data

Compare metabolites based on
correlations

Compare metabolites relative to the
biclogical response range

Reduce the relative importance of large
values, but keep data structure partially
intact

Focus on the metabolites that show small
fluctuations

Focus on relative response

Correct for heteroscedasticity, pseudo

scaling. Make multiplicative models
additive

Correct for heteroscedasticity, pseudo
scaling

Advantages

Remove the offset from the data

All metabolites become equally
important

All metabolites become equally
important. Scaling is related to
biclogy

Stays closer to the original
measurement than autoscaling

Aims for robustness, can use prior
group knowledge

Suited for identification of e.g.
biomarkers

Reduce heteroscedasticity,
multiplicative effects become
additive

Reduce heteroscedasticity, no
problems with small values

Disadvantages

When data is heteroscedastic, the effect of
this pretreatment method is not always
sufficient

Inflation of the measurement errors

Inflation of the measurement errors and
sensitive to outliers

Sensitive to large fold changes

Not suited for large induced variation without
group structure

Inflation of the measurement errors

Difficulties with values with large relative
standard deviation and zeros

Choice for square root is arbitraryg
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Centering

Converts all the concentrations to fluctuations around zero
instead of around the mean of the metabolite
concentrations

Focuses on the fluctuating part of the data

Is applied in combination with data scaling and
transformation

Scaling

Divide each variable by a factor

Different variables have a different scaling factor

Aim to adjust for the differences in fold differences between
the different metabolites.

Results in the inflation of small values

Two subclasses

— Uses a measure of the data dispersion
— Uses a size measure

01/27/2014
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Scaling: subclass 1

* Use data dispersion as a scaling factor

— auto: use the standard deviation as the scaling factor. All the
metabolites have a standard deviation of one and therefore the data
is analyzed on the basis of correlations instead of covariance.

— pareto: use the square root of the standard deviation as the scaling
factor. Large fold changes are decreased more than small fold
changes and thus large fold changes are less dominant compared to
clean data.

— vast: use standard deviation and the coefficient of variation as
scaling factors. This results in a higher importance for metabolites
with a small relative sd.

— range: use (max-min) as scaling factors. Sensitive to outliers.

11

Scaling: subclass 2

» Use average as scaling factors

— The resulting values are changes in percentages compared to the
mean concentration.

— The median can be used as a more robust alternative.




Transformation

* Log and power transformation
* Both reduce large values relatively more than the small
values.
* Log transformation
— pros: removal of heteroscedasticity
— cons: unable to deal with the value zero.
* Power transformation
— pros: similar to log transformation
— cons: not able to make multiplicative effects additive

13
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Log transformation, again

* Hard to do useful statistical tests with a skewed
distribution.

Froquency

;- : -LiIIIiﬁ-_ .

-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 €0 -04 02 00 02 04 06 08 10 12 14 16 18 20
FSH log(FSH)

o

* A skewed distribution or exponentially decaying
distribution can be transformed into a Gaussian
distribution by applying a log transformation.

15
http://www.medcalc.org/manual/transforming_data_to_normality.php

Univariate vs. multivariate analysis

* Univariate analysis examines each variable separately.
— t-tests
— volcano plot

* Multivariate analysis considers two or more variables
simultaneously and takes into account relationships
between variables.

— PCA: Principle Component Analysis
— PLS-DA: Partial Least Squares-Discriminant Analysis

* Univariate analyses are often first used to obtain an
overview or rough ranking of potentially important features
before applying more sophisticated multivariate analyses.

16
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Univariate Statistics

I-test
volcano plot

17

Univariate statistics

* A basic way of presenting univariate data is to create a
frequency distribution of the individual cases.

Wit

Due to the Central Limit
Theorem, many of these
frequency distributions can be
modeled as a normal/Gaussian
distribution.

# of each

Height

18




Gaussian distribution

* The total area underneath each
density curve is equal to 1.

i AN
A r
o)=L N
O 27[ ommeme
mean = u
variance = o

standard deviation = o

00 01 02 03 04

https://en.wikipedia.org/wiki/Normal_distribution

Sample statistics

Sample mean: )_(:EZXi
i=1
Sample variance: §* = LZ(X -X)
n-17

Sample standard deviation: S = Js?

20
https://en.wikipedia.org/wiki/Normal_distribution
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* One-sample r-test: is the sample
drawn from a known population?

Null hypothesis H,: 1=,
Alternative hypethesis H,: u<u,

Test statistic: 7 = >~

o

Sample standard deviation: s = /LZ(xi —f)z ol " gf=1 ]
n=13 0.30} —df=2
0.25] —df=5 |
The test statistic ¢ follows a student’s t Zoao B
distribution. The distribution has -1 ol
degrees of freedom. 0.0s}
0.00=—="> )‘? s 214

t-test (I)

Wy

# of each

Height

When the null hypothesis is
rejected, the result is said to be
statistically significant.

Two-Tailed
P-value = P(Z < —|zlor Z > |z])
=2P(Z > |z)

The sum of The sum of

the area in the area in
the tails is the

P-value

the tails is the
P-value

t-test (II): p-value

ha

CRITICAL VALUE

TEST STATISTIC

) L

Left-Tailed
P-value = P(Z < z)

Right-Tailed
P-value = P(Z > z,)

The area right The arca
left of z,,
is the

J"-mluk7

of z, is the
P-value

22
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t-test (I1II)

* Two-sample -test: are the two populations different?

Null hypothesis H: 1, =0 : ﬁﬂﬁwimiﬂ ﬂﬁhﬁ ;

Alternative hypethesis H,: 14, — u, # )
restsaisic: = ) b S 04

2
sCs
[Si 52
non

* The two samples should be
independent.

t-test (IV)

# of each

Height

Equivalent statements:
* The p-value is small.

* The difference between the two populations is unlikely to
have occurred by chance, i.e. is statistically significant.

24
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* The p-value is big.

* The difference between the
two populations are said
NOT to be statistically
significant.

t-test (V)
Vit il
Hidif i it

# of each

Height 2

t-test (VI)

Paired r-test: what is the effect of a treatment?
Measurements made on the same individuals before and
after the treatment.

Example: Subjects participated in a study on the effectiveness of a
certain diet on serum cholesterol levels.

After || Difference

1 201 200 1 Hy:ip,=0

2 231 236 +5 H, :u,#0

3 221 216 -5 -
Potine d —Hy

5 260 243 -17 Test statistic: ¢ =

6 228 224 4 Sd/ \/;

7 245 235 -10

26
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Volcano plot (I)

Plot fold change vs. significance
y-axis: negative log of the p-value

x-axis: log of the fold change so that changes in both
directions (up and down) appear equidistant from the
center

Two regions of interest: those points that are found towards
the top of the plot that are far to either the left- or the right-
hand side.

27

Volcano plot (II)
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Multivariate statistics

PCA
PLS-DA

29

PCA (I)

* PCA is a statistical procedure to transform a set of
correlated variables into a set of linearly uncorrelated
variables.

30
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PCA (IT)

The uncorrelated variables are ordered in such a way that
the first one accounts for as much of the variability in the
data as possible and each succeeding one has the highest
variance possible in the remaining variables.

These ordered uncorrelated variables are called principle
components.

By discarding low-variance variables, PCA helps us reduce
data dimension and visualize the data.

31

PCA (IIT)

The transformation matrix

P= [p17p23"' ’pn]

The transformation

pl-X Y1 T
A -y X | |w| | Ev
ri-X Yn -

Dy Pyt D, are called the 1%, 274, and »' principle
components, respectively.

32
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PCA (IV)

* Each original sample is represented by an n-dimensional
vector:

Sbefore transformation — [x1’ x2’ TN xn]
» After the transformation
— If all of the principle components are kept, then each sample is still

represented by an n#-dimensional vector:

Safter transformation — [y1’ Yort s y,,]

— If only m < n principle components are kept, then each sample will
be represented by an m-dimensional vector:

Safter transformation — [yl’ Yor v Vm ]

33

PCA (V)

* yare called scores.

* For visualization purpose, m is usually chosen to be 2 or 3.

» As aresult, each sample will be represented by a 2- or 3-
dimenational point in the score plot.

nnnnnnnnnnnnnnnnnnn iysis (Scores)
8

01/27/2014
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PCA (VI)

* Loadings

Components

Variables Yi Y, ce Y,
Xy o Pin
X e P2n

Xn Ipnl pn?l Pnn
Eigenvalues | A1 Ao An

Eigenvectors | p; Po e P

® [Pna plz]u [}721, pzz];' N [Pnl’ pnz] are denoted as pOintS ln the
loadings plot

35

PC2

+0.04 *0.02 0.00 0.02 0.04 0.06

+0.06

Loadings plot for all variables PCA (VII)

Principal Component Analysis (Loadings)

32413268 548.1/3425
4
132080
s S0 _ : N
200.9/3473
27
7.1/588BR8EP
131 394 DGHHBAEXTT
391%&%40“362&596
0105260 PRBEIRIS SRS 2%
2802059962 567
& S /3 430.1/2686
392.2/2929
e
349.1/3633
1213655 536.2/3673
572.4/3932
g s 07 20672 398213630
/3284 498.2/3444
4962(344465,2/13658
544.2/3389
77 266.2/3634 467.2/3661
P I {RFAERERERSS 328.2/3607
330/0171 ROYBER 213500 525.2/0459
o 8
s ledes3a97, 380 asSERRE
349.1/3200412.
301.2/3391 300.2/3390 302.2/3389
T T T T T T
+0.06 +0.04 +0.02 0.00 0.02 0.04 36

PC1

01/27/2014

18



Loadings plot for the top 25 varaibles

Principal Component Analysis (Loadings) Top 25

PCA (VIII)
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Scree plot: variance vs. principle component number

PCA (IX)
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PLS-DA (I)

* A supervised method to find a predictive model that
describes the direction of maximum covariance between a
dataset (X) and the class membership (Y)

* Similar to PCA, the original variables are summarized into
much fewer new variables using their weighted averages.

* The new variables are called scores.
» The weighting profiles are called loadings.

* PLS-DA can perform both classification and feature
selection.

* Feature importance measure: VIP (Variable Importance in
Projection)

39

PLS-DA (II)

 Interpretation of the model

— R2X and R%Y

* fraction of the variance that the model explains in the
independent (X) and dependent variables (Y)

* Range: 0-1

— QZY
* measure of the predictive accuracy of the model
* usually estimated by cross validation or permutation testing
* Range: 0-1
* > (.5 is considered good while > 0.9 is outstanding

40
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PLS-DA (I

* Note of caution
— Supervised classification methods are powerful.
— BUT, they can overfit your data, severely.

41

Machine Learning

Clustering
Classification

42

01/27/2014
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Clustering

Group similar objects together
Any clustering method requires
— A method to measure similarity/dissimilarity between objects
— A threshold to decide whether an object belongs to a cluster
— A way to measure the distance between two clusters
Common clustering algorithms
— K-means
— Hierarchical
— Self-organizing map
Unsupervised machine learning techniques

43

Hierarchical clustering (I)

Find the two closest objects and merge them into a cluster

Find and merge the next two closest objects (or an object
and a cluster, or two clusters)

Repeat step 2 until all objects have been clustered

o

B

o o m e e

44
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Hierarchical clustering (II)

* Methods to measure similarity between objects
— Euclidean, Manhattan
— Pearson correlation
— Cosine similarity

+ Linkage: ways to measure the distance between two clusters

single complete centroid average

45

Hierarchical clustering (I1I)
| T

s

s

=N

01/27/2014

23



Classification

Use a training set of correctly-identified observations to
build a predictive model
Predict to which of a set of categories a new observation
belongs
Supervised machine learning
Methods
— Linear discriminant analysis
— Support vector machine (SVM)
Artificial neural network (ANN)
k-nearest neighbor

Random forest
PLS-DA

47

Software Packages

MetaboAnalyst
XCMS

48
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MetaboAnalyst 2.0

* This is an online set of statistical tools

— http://www.metaboanalyst.ca/

* First, create an Excel file for each sample containing
three columns, the m/z of each metabolite, its
retention time and the peak intensity

* Put the files for a group in a folder.

* Then zip the two folders

* On the MetaboAnalyst website, click on “Welcome,
click here to start”

mzmed rtmed

397.2229
201112
736.4979
313.1259
273.1484
213.1121
398.226
368.2514
261.0085
627.3737
734.4926
300.131
347.2216
731.4695
620.3867
305.1023
301.1655
733.4899
177.9917
253.1425
403.0859
285.1845
310.2012
793.4364
322.2092
384.246
592.0967
591.0937
361.1995
3095.1082
323.2217

28.23
26.02
32.65
27.99
28.24
27.34
28.23
32,63
12.75
27.68
32,65
24.27
2842
27.36
29.29
19.44
37.24
32.63
89.42
26.52

13.6
25.38

26.6
28.23
25.36
26.48

13.6
13.58
25.38
12.55
3145

11
185337
32332
5807
421855
70922

50953
85062
146080
7324
68539
179044
393972
5166

41092
336365
156945

77807
33240
13622
116783
28120
13508
12131
53698
131973
38533
7465
58926

Structure of Excel file for
submission to
MetaboAnalyst

01/27/2014
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MetaboAnalyst data entry

Comma Separated Values (.csv) :

Data type : [ 7 ) Concentrations| 7 | Spectral blns@ Peak intensity table
Format: Samples in rows (unpaired) I s
Data file :

Choose File | No file chosen

Zipped Files (.zip) : [For WinZip 12.x, choose "Legacy compression (Zip 2.0 Compatible

Datatype: () NMR peak list( ) MS peak list__) MS spectra

Data: \2) || Choose File | Nofile chosen

Pairs :

Choose File | No file chosen (required for paired comparison)

Zipped Files (.zip) : [For WinZip 12.x, choose “Legacy compression (Zip 2.0 Compatible)

Data type : ;'\ NMR peak Ilsl@ MS peak list MS spectra

. L2) || Choose File | Cutts_test.zip

| Choose File | Nofile chosen (required for paired comparison)

01/27/2014
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Initial parameter setting

MS peak grouping :

Peaks need to be matched across samples in order to be compared. For two-column format (mass and

intensities), peaks are grouped by their m/z values. For three column data (mass, retention time, and

intensities), the program will further group peaks based on their retention time. Users need to supply tolerance

values in order to proceed. Here are some suggested values: mass tolerance - 0.25 (m/z); retention time - 30
f M k., an for GC-M. ks.

Please note, If a sample has more than one peak in a group, they will be replaced by their sum; some groups
will be excluded if none of the classes has at least half its samples represented. Finally, the program create a
peak intensity table in which each sample occupies a row and each column represents a peak group identified
by the median values of its position (m/z and/or retention time).

Mass tolerance 0.25 (miz)

Reteotion ime Solerance % (unit) -:

Initial evaluation

MS peak processing information
The uploaded files are peak lists and intensities data.
A total of 6 samples were found.
These samples contain a total of 12072 peaks.
with an average of 2012 peaks per sample
A total of 925 peak groups were formed.
Peaks of the same group were summed if they are from one sample.
Peaks appear in less than half of samples in each group were ignored.

01/27/2014
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More assessment of the data

Data processing information:
Checking data content ...passed
The uploaded files are peak lists and intensities data.
A total of 6 samples were found.
These samples contain a total of 12072 peaks.
with an average of 2012 peaks per sample
2 groups were detected in samples.
Samples are not paired.
All data values are numeric.
Actotal of 0 (0%) missing values were detected.
By default, these values will be replaced by a small value.
Click Skip button if you accept the default practice
Or click Missing value imputation to use other methods

Data filtering

' Interquantile range (IQR)

, Standard deviation (SD)

() Median absolute deviation (MAD)

() Relative standard deviation (RSD = SD/mean)

() Non-parametric relative standard deviation (MAD/median)
(=) Mean intensity value

() Median intensity value

() None

28



Data transformation and scaling

Data transformation

(s)None
() Log transformation (generalized logarithm transformation or glog)

() Cube root transformation (take cube root of data values)

Data scaling
()None
C  Autoscaling (mean-centered and divided by the standard deviation of each variable)
@ Pareto Scaling (mean-centered and divided by the square root of standard deviation of each variable)

()Range Scaling (mean-centered and divided by the range of each variable)

Before Normalization After Normalization
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Peaks (mz/m)

430 120822
2L077520
634821130,
266150622
26063116
1072826,

2517835
677425325,

677425325

.08

-
28e413 o
5e.06
206 156413 o
3e.08 10es13 o
2e.06
50e+12 o
Le.06
T
H

vensity

0e+00 00e400

T

]

= ¥ s L
Intensity Normalized Intensity

413 4

T
H

506406

156407 -
2613

01/27/2014

29



Log2 (FC)

Two-fold change cutoff

T-test cutoff, p <0.05
éi ..-'. 'i : ;::' ..':“.
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100 300 400 600 700
Peaks (mz/t)
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Volcano plot

-10g10(p)

log2 (FC)

Color Key

Correlation
matrix
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Peaks differentiating Ctrl/OVEX

368.2513/30.
627.3737/27.
323.25575/60
755.4707/32.
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646.4385/31.
645.4369/31.
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305.2108/28.
779.4764/27.
177.99215/89
397.2229/28.
475.1595/24.
229.06825/24
476.1612/24.
313.12585/27
405.263/34.7
306.2635/40.
300.131/24.2
206.045/118
794.4395/28.
793.4364/28.

Top 25 peaks (mz/rt) correlated with the 1-2
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4 Control
4 OVEX

3D PCA plot

Somponent 1 (43,4 %)
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4 Control
4 OVEX

Component 3 (12.8 %)
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3D-PLSDA plot
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Component 2 ( 31.6 %)
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[ results
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Name

» (1 boxplot

% CloudPlot-svg.svg

@ CloudPlot.pdf

__ CloudPlot.png

@ ec

% MDS.pdf

— MDS.png

w« PCA-diagnostics.pdf
PCA-diagnostics.png

% PCA-loadings-all.pdf

= PCA-loadings-all.png

« PCA-loadings-top.pdf
PCA-loadings-top.png

& PCA.pdf

PCA.png

result.tsv

% rtcor.pdf

_| rtcor.png

(2 spec

w| TICs_rtcor.pdf

| TICs_rtcor.png

@ TICs.pdf

— TICs.png

7 XCMS.annotated.diffreport..1_WT.vs.2_KO.tsv
" XCMS.diffreport..1_WT.vs.2_KO.tsv
) XCMS.diffreport..1_WT.vs.2_KO.xlsx

| XCMSOnline_log.txt

Results from
XCMS Online
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For in-depth statistical analysis and data interpretation,

please make an appointment with a biostatistician.
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Thank you!

70

01/27/2014

35



